La FUSION par CONFINEMENT MAGNÉTIQUE le long CHEMIN du RÊVE à UNE RÉALISATION EXPÉRIMENTALE

DE LA RECHERCHE À L'INDUSTR

- Déterminer le confinement
- Turbulence plasma
- Statistiques cinétiques How is plasma special?
- Gyrocinétique 5D
- Flux de chaleur à la paroi

SOMMAIRE II

Triple produit : $n_e T_i \tau_E >$ seuil

Lawson 1957

 n_e **densité** (des électrons)

T_i énergie thermique des ions (D & T)

 τ_E temps de confinement de l'énergie

 $T_i \approx 10 \text{ keV}$ optimum fusion D, T

 $\tau_E = \frac{6.2 \ 10^{20} \ s \ m^{-3}}{n_e} \frac{Q}{(Q+5)}$

 $Q \rightarrow + \infty$ ignition

confinement magnétique : n_e faible $\Rightarrow \tau_E$ long

Go big / évidence expérimentale

 $\tau_E = \frac{a^2}{\rho_r^2} \tau_{\parallel} \approx \rho_*^{-3} \frac{1}{\Omega}$

¿ Sens des lois d'échelle ? &

<u>Questions ouvertes</u> sur au_{F}

- Incertitudes \Rightarrow risques
- Poids des petits tokamaks ?
- Dispersion des points ?
- Choix des données ?
- Quelle compréhension ?

a $Marche au hasard, pas \delta, temps \tau$

Transport = diffusion $D = \delta^2 / \tau$ Temps de confinement $\tau_E = a^2 / D$

Pas $\delta \propto$ rayon de Larmor $\rho_L \rightarrow \rho_* = \rho_L / a$ Durée $\tau \propto$ temps parallèle $\tau_{//} \propto a / V_{//}$

RECHERCHE À L'INDUSTRIE

Incertitude expérimentale

Loi d'échelle, paramètres de contrôle (sans dimension)

ITER 1998
$$\Omega au_E \equiv
ho_*^{-2.7} eta^{-0.9}
u_*^{0.0}$$
2.7 -0.9 0.00

 $\rho_* \approx$ nombre de Reynolds

eta : pression plasma

 \mathcal{V}_* : collisionalité

Expériences dédiées : JET (EU) & DIII-D (USA)

3.0 0.0 -0.35

 $\Omega \tau_E \equiv \rho_*^{-3.0} \beta^{0.0} \nu_*^{-0.35}$

Grenoble, GEPhyX, 7 juillet 2022, Philippe GHENDRIH 7 / 46

• Déterminer le confinement

• Turbulence plasma

- Statistiques cinétiques How is plasma special?
- Gyrocinétique 5D
- Flux de chaleur à la paroi

TURBULENCE PLASMA

Instabilité microscopique = structure potentiel électrique Fluctuations :

Grenoble, GEPhyX, 7 juillet 2022, Philippe GHENDRIH 9 / 46

DE LA RECHERCHE À L'INDUSTRIE

Turbulence plasma

carte du potentiel électrique ϕ surdensité convection à ϕ = constante *B* inhomogène $\Rightarrow \phi \neq$ constante \Rightarrow vitesse turbulente

∃ instabilités microscopiques ⇒ transport turbulent Turbulence = problème fondamental infiniment normal Turbulence plasma ⇔ Turbulence atmosphère planétaire

Taille et tempser

potentiel électrique ϕ

Taille (papillon ≠ dépression)

Temps caractéristique : τ

Vitesse :
$$\mathbf{v} \approx \delta / \tau = \rho_* \mathbf{v}_{th}$$

plasma stabilisation : $v_{//} \rightarrow \tau \propto a / v_{th} = \tau_{NL} = \rho / v$ $\Rightarrow \delta \propto \rho_L$ Diffusion : $D \propto \rho_* T / (eB) \rightarrow \tau_E \propto 1 s$

Analyse dimensionnelle ¿ Constante multiplicative ? Chaos et turbulence ?

Turbulence ! Action ! On tourne !

Etudes linéaires

stabilité/instabilité relation de dispers

Non linéaires

Simulations études statistiques

Analogies :

thermo-convection atmosphères planétaires

- Déterminer le confinement
- Turbulence plasma
- Statistiques cinétiques How is plasma special?
- Gyrocinétique 5D
- Flux de chaleur à la paroi

STATISTIQUES CINÉTIQUES How is plasma special?

Plasma : libre parcours moyen de collision L_{coll} périphérie : $L_{coll} \ge a$ centre : $L_{coll} \ge a$

Particule caractérisée par position et vitesse physique statistique = cinétique

Plasma : gaz très dilué 🕼

 $\begin{array}{ccc} & \text{liquide gaz} & \text{plasma} \\ \text{densité (m^{-3})} & 10^{29} & 10^{25} & 10^{19} \\ \hline & \text{Fluides Neutres} & \text{Cinétique chargé} \end{array}$

Libre parcours moyen de collision : *L_{coll}*

Plasma : périphérie : $L_{coll} \ge a$ centre : $L_{coll} >> a$

Particules

- trajectoire = position & vitesse
- physique statistique = cinétique

Statistique : espace des phases

Flux Γ

Espace 6 dimensions Hamilton / Lagrange Heisenberg : $m \delta v \delta x \ge \hbar$ densité $\rightarrow f(x,v,t)$ fonction de distribution selon v: (F/m) fselon x : v f

Equation cinétique : $\partial_t f + \nabla \cdot \Gamma = source$ 6D Plasma magnétisé = simplification complexe

22 Two species plasma: Vlasov-Poisson &

Reference species = electrons: α = e 1D in position, 1D in velocity = 1D-1V

$$\partial_t f_e + \nabla_x (v f_e) - \nabla_v (E f_e) = 0 \quad \partial_t f_i + \sqrt{\frac{m_e}{m_i}} \Big(\nabla_x (v f_i) + \nabla_v (E f_i) \Big) = 0$$
$$-\nabla_x E = \nabla_x^2 \phi = n_e - n_i$$

$$\left|\frac{m_e}{m_i} \to 0\right|$$

 $\partial_t f_e + \nabla_x (v f_e) - \nabla_v (E f_e) = 0 \quad -\nabla_x E = \nabla_x^2 \phi = n_e - 1$

Prepared initial state $t = t_0$ conditions:

$$f(x, v, t_0) = f_M(v) \left(1 + \varepsilon_L \cos(kx) \right)$$

Dispersion equation

Solutions of the dispersion equation $(k^2 + G_{eq}(\Omega/k))\hat{\phi}(k,\Omega) = 0$

with: $G_M(\Omega/k) = 1 + (\Omega/k)$

$$\int_{-\infty}^{+\infty} dv \, \frac{f_M(v)}{v - \Omega/k}$$

Landau damping

Grenoble, GEPhyX, 7 juillet 2022, Philippe GHENDRIH 19 / 46

Le paradoxe

Grenoble, *GEPhyX*, 7 juillet 2022, Philippe GHENDRIH 20 / 46

Many kinetic problems

Collisions, heat transfer, sheath physics, quasineutrality...

- Déterminer le confinement
- Turbulence plasma
- Statistiques cinétiques How is plasma special?
- Gyrocinétique 5D
- Flux de chaleur à la paroi

GYROCINÉTIQUE IN 5D

Vlasov equation (Boltzmann for plasmas)

Kinetic equation $\frac{df_a(\boldsymbol{x}, \boldsymbol{v}, t)}{dt} = \mathcal{C}_a$ 1-particle distribution function: f_{a} collisions: C_a $rac{df_a(oldsymbol{x},oldsymbol{v},t)}{dt} = \Big(rac{\partial}{\partial t} + \dot{oldsymbol{x}}\cdotoldsymbol{
abla}_x + \dot{oldsymbol{v}}\cdotoldsymbol{
abla}_v\Big)f_a(oldsymbol{x},oldsymbol{v},t)$ **VLASOV operator:** $\frac{df_a(\boldsymbol{x}, \boldsymbol{v}, t)}{dt} = \left(\frac{\partial}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla}_x + \frac{\boldsymbol{F}}{m_a} \cdot \boldsymbol{\nabla}_v\right) f_a(\boldsymbol{x}, \boldsymbol{v}, t)$ $F = q_a E + q_a v \times B$

a-dimensional form: $\boldsymbol{b} = \boldsymbol{b}_0 + \varepsilon ((\boldsymbol{x} - \boldsymbol{x}_0) \cdot \boldsymbol{\nabla}_x) \boldsymbol{b}|_{\boldsymbol{x}_0} + \dots = R_0$

$$\left(\frac{\partial}{\partial t} + \frac{1}{\sqrt{M_a}} \boldsymbol{v} \cdot \boldsymbol{\nabla}_x + \frac{Z_a}{\sqrt{M_a}} \boldsymbol{E} \cdot \boldsymbol{\nabla}_v + \frac{Z_a}{\sqrt{M_a}} \frac{1}{\varepsilon} (\boldsymbol{v} \times \boldsymbol{b}) \cdot \boldsymbol{\nabla}_v \right) f_a(\boldsymbol{x}, \boldsymbol{v}, t) = \nu_a^* \mathcal{C}_a$$

$$t_0 V_{0,a} = t_0 V_{0,a} \frac{V_{0,a}}{V_{0,a}} = L_0 \qquad \qquad \frac{q_a E_0 t_0}{m_a V_{0,a}} = \frac{Z_a}{\sqrt{M_a}} \qquad \qquad \qquad \frac{q_a B_0 t_0}{m_a} = Z_a \frac{B_0}{E_0 V_{0,a}} = \frac{Z_a}{M_a} \frac{1}{\varepsilon} \qquad \qquad t_0 \nu_a = \nu_a^*$$

$$\textbf{Grenoble, GEPhyX, 7 juillet 2022, Philippe GHENDRIH 23 / 46 }$$

Large B asymptotic limit of Vlasov

 $\varepsilon \rightarrow 0; \quad b = b_0$ Asymptotic limit of Vlasov

$$\frac{1}{\varepsilon} \Big((\boldsymbol{v} \times \boldsymbol{b}_0) \cdot \boldsymbol{\nabla}_v \Big) f_a(\boldsymbol{x}, \boldsymbol{v}, t) = \frac{1}{\varepsilon} \frac{\partial}{\partial \varphi_c} f_a(\boldsymbol{x}, \boldsymbol{v}_{\parallel}, v_{\perp}, \varphi_c, t)$$

Gyrokinetic equation: expansion in \mathcal{E}

High frequency (Ω) = \perp particle motion \rightarrow gyroaverage

0

Gyrokinetics : phase space $6D \rightarrow 5D$

Much better for the code

• Difficult framework

 ho_{\perp}

 $\rho_{\perp} \approx 10^{-3} \text{ m}$

Maxwell equations for E & Birfm

Asymptotic limits in Maxwell equations

- B is given (low β limit)
- electrostatic limit ⇒ Poisson equation

All the confined plasma volume?

Why? Given the cost: mesh size + time steady state (= τ_E) No scale separation Importance of large scales: barrier physics

Boundaries (no r-periodicity)

No inner radius outer radius: SOL, heat sink

Plasma shaping:

Work in progress *New code version?*

A guide to the various plots

Torus = 2 angles + radial coordinate

unfolding the angles 1-D & 2-D plots

filament structure \approx quasi 2D n (a.u.)

Steady-state & global

WATT: Grand challenge OCCIGEN2 (8 Million CPU hours)

- self-organised turbulence: avalanches + staircase (= large scale)
- SOL corrugated boundary

DE LA RECHERCHE À L'INDUSTRI

Interchange instability

Symmetries

equilibrium

collisions

gyration

- = isotropic
- = cylindrical
- = toroidal axisymmetric

turbulence/MHD = non-axisymmetric

Filtered Eigen mode (r, θ) ballooned structure

0

 $\rho_{\perp} \approx 10^{-3} \text{ m}$

High frequency (Ω) = \perp particle motion \rightarrow gyroaverage

Particle trapping μ magnetic moment $H = \frac{1}{2}m_{\alpha}v_{\parallel}^2 + \mu B$

鋖

 $B \propto 1 / R (Ampère circulation) -2$ $torus: <math>R = R_0 + r \cos\theta$ -3 - = pendulum ($R_0 >>r$) -1.0

Grenoble, GEPhyX, 7 juillet 2022, Philippe GHENDRIH 31 / 46

Kinetic effects: non-maxwellian f:

Avalanches: fronts & holes

Turbulent Heat Transport

Turbulent electric potential

 \Rightarrow Turbulent heat flux

 \Rightarrow Turbulent Reynolds stress

Grenoble, GEPhyX, 7 juillet 2022, Philippe GHENDRIH 33 / 46

DE LA RECHERCHE À L'INDUSTRIE

Boundary layers &

Grenoble, GEPhyX, 7 juillet 2022, Philippe GHENDRIH 34 / 46

cea

Barriers & corrugations

Grenoble, GEPhyX, 7 juillet 2022, Philippe GHENDRIH 35 / 46

FLUX DE CHALEUR À LA PAROI

Ensuring long life time of Wall components

- Déterminer le confinement
- Turbulence plasma
- Statistiques cinétiques How is plasma special?
- Gyrocinétique 5D
- Flux de chaleur à la paroi

HEAT fluxes to ITER WALL?

• // heat flux 100 MW/m² to 10 GW/m²

JET experiment (EU)

neutral particle pressure Divertor volume

Physics meets Technology technology limit 10 MW / m²

Grenoble, GEPhyX, 7 juillet 2022, Philippe GHENDRIH 37 / 46

ELMs: MHD relaxation events

cea k-epsilon import in plasmas

PLANNED: ITER divertor = first actively cooled W divertor

- = first divertor to operate 10 years
- = first at techno limit 10 MW/m²

Steady-state

Transients

Solution shaping... 300 000 elements to shape

ITER ELM simulator

Grenoble, GEPhyX, 7 juillet 2022, Philippe GHENDRIH 40 / 46

Just WEST of ITER

Grenoble, GEPhyX, 7 juillet 2022, Philippe GHENDRIH 41 / 46

Cea Electrons runaways : formation

T+: -15.052 ms Img#: -31 Cam: Phantom v.7 AcqRes: 800 x 600 Rate: 2000 Exp: 495 μs EDR: 0 μs First: -293 Last: 1596 Durat: 0.945 s Range data: Description:

Grenoble, GEPhyX, 7 juillet 2022, Philippe GHENDRIH 42 / 46

Electrons runaways : fin

T+: +403.948 ms Img#: 807 Cam: Phantom v.7 AcqRes: 800 x 600 Rate: 2000 Exp: 495 μs EDR: 0 μs First: -293 Last: 1596 Durat: 0.945 s Range data: Description:

Grenoble, GEPhyX, 7 juillet 2022, Philippe GHENDRIH 43 / 46

Fusion promises...

Long term research in a changing world! (cold war to ITER)

Safe, no waste, inexhaustible... Complex technology Tayloring burning plasmas On the way to material science

Science of complexity "infinitely normal" Large scale computing

Big money science Funding innovation in industry Stepping Fusion to reactor issues

Grenoble, GEPhyX, 7 juillet 2022, Philippe GHENDRIH 45 / 46

Take away

- Une recherche finalisée
- *Sur le front de l'énergie Un rêve pour l'humanité*
- Une collaboration internationale ! Premier succès d'ITER
- Un prototype aux limites

Qui va tirer les marrons du feu ?

Commissariat à l'énergie atomique et aux énergies alternatives		DS
Centre de Cadarache	13108 Saint Paul Lez Durance Cedex	IRI
T. +33 (0)4 42 25 46 59 F. +33 (0)4 42 25 64 21		SIF

Etablissement public à caractère industriel et commercial RCS Paris B 775 685 019